Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Q is empty.
We use [27] with the following order to prove termination.
Knuth-Bendix order [24] with precedence:
activate1 > f1 > nf1
and weight map:
activate_1=5
f_1=3
a=5
g_1=2
n__a=1
n__f_1=3